반응형
반응형
플라이백 컨버터의 동작에 대해 조금 더 자세하게 설명하겠습니다. 오른쪽 회로는 PWM 제어의 플라이백 컨버터로, 연속 모드 동작입니다. 먼저 MOSFET가 ON되면, 트랜스의 극성이 반대이므로 트랜스의 1차측 권선에 전류가 흘러, 에너지가 축적됩니다. 이때, 다이오드는 OFF됩니다. 다음으로 MOSFET가 OFF되면, 축적된 에너지가 트랜스의 2차측 권선에서 다이오드를 통해 출력되고, 정류 및 평활을 통해 DC 전압을 생성합니다. 이러한 동작과 각 부분의 전압, 전류 파형을 하기와 같이 정리하였습니다. MOSFET가 ON되면, 트랜스의 1차측 권선에 전류가 흘러, 에너지가 축적된다. 이때, 다이오드는 OFF. MOSFET가 OFF되면, 축적된 에너지가 트랜스의 2차측 권선에서 다이오드를 통해 출력된다. ..
여기에서는 플라이백 변환 방식을 사용한 설계 사례를 통해, 플라이백 방식의 기본 회로와 특징에 대해 설명하겠습니다. 플라이백 컨버터에는 일반적인 PWM 제어 이외에 자려 (Self-excitation) 타입 RCC (Ringing Choke Converter)와 RCC에 공진 기술을 이용한 의사공진 타입의 3종류가 있으며, 100W 정도까지의 스위칭 전원에 자주 사용됩니다. 기본 회로는 그림과 같이 심플하며, 적은 부품수로 구성할 수 있습니다. 입력전압 (DC)을 스위칭 트랜지스터로 초핑하고, 스위칭 트랜스를 통해 2차측으로 에너지를 전달합니다. 2차측에서는 이를 정류하여 평활화함으로써 필요한 DC 전압으로 변환합니다. 실제의 회로에서는, 출력을 모니터링하여 스위칭 트랜지스터를 제어하는 귀환 및 제어 회..
먼저, 스위칭 방식의 AC/DC 변환에 대해 간단히 설명하겠습니다. 하기의 기본 회로와 파형을 참조하여 주십시오. 여기에서는 입력전압을 100VAC라고 가정하겠습니다. 이 100VAC를 먼저 다이오드 브릿지로 정류합니다. 이는 전파 정류입니다. 100VAC를 그대로 정류하는 것이므로, 다이오드 브릿지는 고전압을 견딜 수 있는 사양이 필요합니다. 100VAC는 피크치로 140V 정도가 됩니다. 다음으로 콘덴서를 사용하여 평활합니다. 이 역시 고전압 제품이 필요합니다. 원리적으로는 이 시점에서 AC/DC 변환을 실시하지만, 일반적인 DC 구동 회로에서 사용 가능한 DC 전압으로 하기 위해서는 이후에 몇 단계의 공정이 필요합니다. 정류기와 콘덴서를 통해 변환된 이 고압의 DC 전압은, 스위칭 소자의 ON / ..
지금까지, AC/DC 변환의 기초로서 하기의 항목에 대해 설명했습니다. ・AC/DC 변환에는, 트랜스 방식과 스위칭 방식이 있다. ・AC/DC 변환에서는, AC를 정류 / 평활을 통해 DC로 변환한다. ・트랜스 방식에서는, 평활화된 DC를 그대로 사용할 수도 있지만, 정밀도와 안정화가 필요하다면 DC/DC 변환을 통해 원하는 DC 전압으로 변환한다. ・스위칭 방식에서는, 대략적으로 AC의 피크 전압치의 DC를 취급하므로, 고내압의 부품이 필요하다. ・스위칭 방식의 정류 / 평활 후 DC로의 변환은, 입력이 고전압일 경우를 제외하고는 통상적인 스위칭 DC/DC 변환과 동일하다. ・AC/DC 변환 회로의 설계 시에는, 트랜스 설계가 동반된다. ・온 보드 설계 시에는, AC/DC 전원용 IC를 사용하는 편이 ..
디스크리트 구성을 사용할 것인지, 전원용 IC를 사용할 것인지에 대한 검토는 지속적으로 감소 추세이지만, 주로 온보드 전원을 설계한다는 관점에서 설명하겠습니다. 여러가지 견해가 있겠지만, 전원 IC를 사용하는 메리트를 생각하면, 전원 IC를 완벽하게 사용하는 것이 좋은 방법이라고 생각합니다. 전원 IC에는, 최적의 제어가 가능하도록 필요한 회로와 기능의 대부분이 탑재되어 있습니다. 따라서, 설계자가 이를 조정하면서 자신의 설계에 최적화함으로써, 완성도 높은 전원을 실현할 수 있습니다. 전원은 전원 메이커가 보유한 노하우의 집합체로서, 튜닝의 편이성 및 성능 면, 그리고 비용 면에서도 디스크리트 구성이 우수한 시대가 있었습니다. 그러나, 오늘날의 전원용 IC는 다양한 시장 요구를 반영하여, 간단하고 편리하..
디버그 및 최적화가 끝나면, 양산을 하기 위한 판단을 실시합니다. 이 때, 요구 사양을 완벽하게 만족할 수 없는 경우가 있습니다. 이러한 경우에는 꼭 필요한 사양을 만족시키기 위해 재설계가 필요하거나, 타협점을 찾아 전체적으로 목표치에 가까워지도록 트레이드 오프의 검토가 필요하기도 합니다. 이상으로 설계의 순서와 확인 항목을 모두 설명했습니다. 설계의 진척을 위해서는 확실한 계획뿐만 아니라, 문제에 유연히 대처할 수 있는 임기응변도 필요합니다. 키 포인트 ・프로토타입 평가에서는 레이아웃으로 기인하는 문제 등, 도면에서 예측할 수 없는 문제가 발생할 가능성이 있다. ・동작 마진은 반드시 체크한다. 마진이 없는 설계는 양산품의 수율 등에서 문제를 일으킨다.